Abstract

Neovascularization is the pathological driver of blinding eye diseases such as retinopathy of prematurity, proliferative diabetic retinopathy, and wet age-related macular degeneration. The loss of vision resulting from these diseases significantly impacts the productivity and quality of life of patients, and represents a substantial burden on the health care system. Current standard of care includes biologics that target vascular endothelial growth factor (VEGF), a key mediator of neovascularization. While anti-VGEF therapies have been successful, up to 30% of patients are non-responsive. Therefore, there is a need for new therapeutic targets, and small molecule inhibitors of angiogenesis to complement existing treatments. Apelin and its receptor have recently been shown to play a key role in both developmental and pathological angiogenesis in the eye. Through a cell-based high-throughput screen, we identified 4-aminoquinoline antimalarial drugs as potent selective antagonists of APJ. The prototypical 4-aminoquinoline, amodiaquine was found to be a selective, non-competitive APJ antagonist that inhibited apelin signaling in a concentration-dependent manner. Additionally, amodiaquine suppressed both apelin-and VGEF-induced endothelial tube formation. Intravitreal amodaiquine significantly reduced choroidal neovascularization (CNV) lesion volume in the laser-induced CNV mouse model, and showed no signs of ocular toxicity at the highest doses tested. This work firmly establishes APJ as a novel, chemically tractable therapeutic target for the treatment of ocular neovascularization, and that amodiaquine is a potential candidate for repurposing and further toxicological, and pharmacokinetic evaluation in the clinic.

Highlights

  • Two of the leading causes of visual impairment and blindness in the western world are diabetic retinopathy (DR) and exudative age-related macular degeneration (AMD) [1]

  • In 2010, more than 6 million Americans suffered from DR and ~2 million suffered from AMD, and the incidence is increasing significantly [2,3,4]

  • Having confirmed that human retinal microvascular endothelial cells (HRECs) cells express APJ, we evaluated the effect of Ap13 and its inhibitors on HREC proliferation, migration and tube formation

Read more

Summary

Introduction

Two of the leading causes of visual impairment and blindness in the western world are diabetic retinopathy (DR) and exudative age-related macular degeneration (AMD) [1]. Both represent a significant impact on the independence, productivity and quality of life of patients as well as a substantial burden on the health care system. By 2050 the number of Americans with DR and AMD are expected to double [4]. As the lifespan of our population continues to increase, there will be an increasing number of people who are at risk of developing visual impairment. The economic burden of visual impairment will continue to grow

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call