Abstract

We analyze the non-equilibrium behaviour of driven nonlinear photonic resonator arrays under the selective excitation of specific photonic many-body modes. Targeting the unit-filled ground state, we find a counter-intuitive `super bunching' in the emitted photon statistics in spite of relatively strong onsite repulsive interaction. We consider resonator arrays with Kerr nonlinearities described by the Bose Hubbard model, but also show that an analogous effect is observable in near-future experiments coupling resonators to two-level systems as described by the Jaynes Cummings Hubbard Hamiltonian. For the experimentally accessible case of a pair of coupled resonators forming a photonic molecule, we provide an analytical explanation for the nature of the effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.