Abstract

Synchronization in complex networks characterizes what happens when an ensemble of oscillators in a complex autonomous system become phase-locked. We study the Kuramoto model with a tunable phase-lag parameter α in the coupling term to determine how phase shifts influence the synchronization transition. The simulation results show that the phase frustration parameter leads to desynchronization. We find two global synchronization regions for α∈[0,2π) when the coupling is sufficiently large and detect a relatively rare network synchronization pattern in the frustration parameter near α=π. We call this frequency-locking configuration as "repulsive synchronization," because it is induced by repulsive coupling. Since the repulsive synchronization cannot be described by the usual order parameter r, the parameter frequency dispersion is introduced to detect synchronization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.