Abstract

Repulsive guidance molecule a (RGMa) has now emerged as a molecule with pleiotropic roles, including repulsion, adhesion, migration and differentiation in the nervous system. In this study, adult male Sprague-Dawley (SD) rats received 90-min middle cerebral artery occlusion (MCAO) to observe RGMa/neogenin expression sites after ischemia/reperfusion injury and changes in angiogenesis after treatment with RNA interference using RGMa-specific recombinant adenovirus rAd5-shRNA-RGMa (rAd-shRGMa). To clarify how RGMa mediates angiogenesis, the RGMa function-blocking peptide six fibronectin type III (6FNIII) was also administered, and corresponding changes in vascular endothelial growth factor (VEGF), angiopoietin-2 (Ang2), angiopoietin-1 (Ang1), and brain derived neurotrophic factor (BDNF) were determined by western blotting. Both RGMa and its receptor neogenin were expressed in neurons and vessel endothelial cells after ischemia/reperfusion injury, and angiogenesis, coupled with functional recovery, was enhanced after RNA interference against RGMa compared with the vehicle groups. VEGF, Ang2, Ang1 and BDNF expression levels were significantly increased after intervention with rAd-shRGMa or 6FNIII. Thus, RGMa might suppress angiogenesis via VEGF, Ang2, Ang1 and BDNF after cerebral ischemia/reperfusion injury, which has therapeutic potential by reducing these endogenous detrimental mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.