Abstract

Abstract The flow of fallback matter being shocked and repelled back by an energy deposition from a central object is discussed using newly found self-similar solutions. We show that there exists a maximum mass-accretion rate if the adiabatic index of the flow is less than or equal to 4/3. Otherwise, we can find a solution with an arbitrarily large accretion rate by appropriately shrinking the energy deposition region. Applying the self-similar solution to supernova fallback, we discuss how the fate of newborn pulsars or magnetars depends on the fallback accretion and their spin-down power. Combining the maximum accretion rate with the condition for the fallback accretion to bury the surface magnetic field into the crust, we argue that supernova fallback with a rate of $\dot{M}_{\rm fb} \sim 10^{-(4\mbox{-}6)}\, M_{\odot }\:$s−1 could be the main origin of the diversity of Galactic young neutron stars, i.e., rotation-powered pulsars, magnetars, and central compact objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.