Abstract

It is shown that the model of underlying stochastic motion of a macromolecule leads to two modes of motion: reptative and isotropically diffusive. There is a length of a macromolecule M* ≈ 10Me, where Me is “the macro-molecule length between adjacent entanglements,” above which macromolecules of a melt can be regarded as obstacles to motion of each other, and the macromolecules reptate. The transition to the reptation mode of motion is determined by both topological restrictions and local anisotropy of motion. The investigation confirm that the reptation motion determines the M−2 molecular-weight dependence of the self-diffusion coefficient of macromolecules in melts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.