Abstract

We construct some locally ℚ p -analytic representations of GL2(L), L a finite extension of ℚ p , associated to some p-adic representations of the absolute Galois group of L. We prove that the space of morphisms from these representations to the de Rham complex of Drinfel’d’s upper half space has a structure of rank 2 admissible filtered (φ, N)-module. Finally, we prove that this filtered module is associated, via Fontaine’s theory, to the initial Galois representation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.