Abstract

The production of 1,3-propanediol (1,3-PD) from glycerol by Klebsiella pneumoniae is limited by synthesis of numerous byproducts. Among them, the accumulation of acetate has the largest negative impact on the fermentation performance. To address the acetate overflow caused by knocking out lactate dehydrogenase, alcohol dehydrogenase and succinate dehydrogenase, several metabolic engineering manipulations were conducted. First, acetate was reduced through enhancing the acetate assimilation pathway by overexpressing heterologous acetyl-CoA synthetase. Then, the polyhydroxybutyrate (PHB) synthesis pathway was introduced to further reprogram the intracellular carbon metabolism. As a result, the best performed strain Kpr-6 produced up to 91.2 g/L extracellular 1,3-PD and 2.56 g/L intracellular PHB which can be easily separated from each other, while the acetate was dramatically reduced. The metabolic engineering strategies developed in this study would be helpful for constructing the microbial cell factory for other similar bio-based chemical production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.