Abstract
In this study we examine whether a somatic cell, once returned to a pluripotent state, gains the ability to reprogram other somatic cells. We reprogrammed mouse embryonic fibroblasts by viral induction of oct4, sox2, c-myc, and klf-4 genes. Upon fusion of the resulting iPS cells with somatic cells harboring an Oct4-GFP transgene we observed, GFP expression along with activation of Oct4 from the somatic genome, expression of key pluripotency genes, and positive immunostaining for Oct4, SSEA-1, and alkaline phosphatase. The iPS-somatic hybrids had the ability to differentiate into cell types indicative of the three germ layers and were able to localize to the inner cell mass of aggregated embryos. Furthermore, ntES cells were used as fusion partners to generate hybrids, which were also confirmed to be reprogrammed to a pluripotent state. These results demonstrate that once a somatic cell nucleus is reprogrammed, it acquires the capacity and potency to reprogram other somatic cells by cell fusion and shares this functional property with normal embryonic stem (ES) cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.