Abstract

BackgroundTranscript profiling of differentiating secondary xylem has allowed us to draw a general picture of the genes involved in wood formation. However, our knowledge is still limited about the regulatory mechanisms that coordinate and modulate the different pathways providing substrates during xylogenesis. The development of compression wood in conifers constitutes an exceptional model for these studies. Although differential expression of a few genes in differentiating compression wood compared to normal or opposite wood has been reported, the broad range of features that distinguish this reaction wood suggest that the expression of a larger set of genes would be modified.ResultsBy combining the construction of different cDNA libraries with microarray analyses we have identified a total of 496 genes in maritime pine (Pinus pinaster, Ait.) that change in expression during differentiation of compression wood (331 up-regulated and 165 down-regulated compared to opposite wood). Samples from different provenances collected in different years and geographic locations were integrated into the analyses to mitigate the effects of multiple sources of variability. This strategy allowed us to define a group of genes that are consistently associated with compression wood formation. Correlating with the deposition of a thicker secondary cell wall that characterizes compression wood development, the expression of a number of genes involved in synthesis of cellulose, hemicellulose, lignin and lignans was up-regulated. Further analysis of a set of these genes involved in S-adenosylmethionine metabolism, ammonium recycling, and lignin and lignans biosynthesis showed changes in expression levels in parallel to the levels of lignin accumulation in cells undergoing xylogenesis in vivo and in vitro.ConclusionsThe comparative transcriptomic analysis reported here have revealed a broad spectrum of coordinated transcriptional modulation of genes involved in biosynthesis of different cell wall polymers associated with within-tree variations in pine wood structure and composition. In particular, we demonstrate the coordinated modulation at transcriptional level of a gene set involved in S-adenosylmethionine synthesis and ammonium assimilation with increased demand for coniferyl alcohol for lignin and lignan synthesis, enabling a better understanding of the metabolic requirements in cells undergoing lignification.

Highlights

  • Transcript profiling of differentiating secondary xylem has allowed us to draw a general picture of the genes involved in wood formation

  • Considerable effort has been focused on studying the main pathways that lead to monolignol biosynthesis [12] and carbohydrate partitioning to cellulose [13], as well as understanding how changes in gene expression in those pathways may affect cellular wall characteristics and, wood quality [14]

  • Two microarrays were manufactured with cDNA libraries constructed with RNA isolated from adult maritime pine trees of Corsican and Aquitaine provenances grown in Aquitaine, France

Read more

Summary

Introduction

Transcript profiling of differentiating secondary xylem has allowed us to draw a general picture of the genes involved in wood formation. Large amounts of wood can be formed throughout the life of a tree through a complex process of cell differentiation called xylogenesis In this process, cambiumderived cells undergo cell division followed by thickening of the secondary cell wall by modification of the synthesis and deposition of cellulose, hemicelluloses, cell wall proteins and lignin, and programmed cell death to develop tracheary elements [1]. Genes involved in these cellular processes are under strict transcriptional regulation during different stages of differentiation [2]. It has been proposed that glycine decarboxylase activity associated with SAM metabolism could be an important source of released ammonium, which must be efficiently re-assimilated to prevent significant imbalances in the strict nitrogen economy of the plant [19]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.