Abstract

Multistable dynamical systems are ubiquitous in nature, especially in the context of regulatory networks controlling cell fate decisions, wherein stable steady states correspond to different cell phenotypes. In the past decade, it has become experimentally possible to "reprogram" the fate of a cell by suitable externally imposed input stimulations. In several of these reprogramming instances, the underlying regulatory network has a known structure and often it falls in the class of cooperative monotone dynamical systems. In this paper, we therefore leverage this structure to provide concrete guidance on the choice of inputs that reprogram a cooperative dynamical system to a desired target steady state. Our results are parameter-independent and therefore can serve as a practical guidance to cell-fate reprogramming experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.