Abstract
Pluripotent stem cells (PSCs), such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have a dual capability to self-renew and differentiate into all cell types necessary to develop an entire organism. Differentiation is associated with dynamic epigenetic alteration and transcriptional change, while self-renewal depends on maintaining the genome DNA accurately. Genome stability of PSCs is strictly regulated to maintain pluripotency. However, the DNA damage response (DDR) mechanism in PSCs is still unclear. There is accumulating evidence that genome stability and pluripotency are regulated by a transcriptional change in undifferentiated and differentiated states. iPSCs are ideal for analyzing transcriptional regulation during reprogramming and differentiation.This study aimed to elucidate the transcriptional alteration surrounding genome stability maintenance, including DNA repair, cell cycle checkpoints and apoptosis in fibroblasts, iPSCs and neural progenitor cells (NPCs) derived from iPSCs as differentiated cells. After ionizing radiation exposure, foci for the DNA double-stranded break marker γ-H2AX increased, peaking at 0.5 h in all cells (>90%), decreasing after 4 h in fibroblasts (32.3%) and NPCs (22.3%), but still remaining at 52.5% (NB1RGB C2 clone) and 54.7% (201B7 cells) in iPSCs. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells were detected, indicating that iPSCs’ apoptosis increases. In addition, RNA sequencing (RNA-Seq) analysis showed high expression of apoptosis genes (TP53, CASP3 and BID) in iPSCs. Results suggested that increased apoptosis activity maintains accurate, undifferentiated genome DNA in the cell population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.