Abstract

Reprogrammability of magnonic band structure in layered Permalloy/Cu/Permalloy nanowires is demonstrated to depend on the relative orientation of the two layers magnetization. By using Brillouin light spectroscopy, we show that when the layers are aligned parallel two dispersive modes, with positive and negative group velocity, are observed while when the magnetic layers are aligned anti-parallel, only one dispersive mode, with positive group velocity, is detected. Our findings are successfully compared and interpreted in terms of a microscopic (Hamiltonian-based) method. An explanation for the observed behavior can be attributed to mode-mixing (or hybridization) effect when the two magnetic layers are aligned anti-parallel. This work opens the path to magnetic field-controlled reconfigurable magnonic crystals with multi-modal frequency transmission characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call