Abstract
Origami- and kirigami-based design principles have recently received strong interest from the scientific and engineering communities because they offer fresh approaches to engineering of structural hierarchy and adaptive functions in materials, which could lead to many promising applications. Herein, we present a reprogrammable 3D chemical shaping strategy for creating a wide variety of stable complex origami and kirigami structures autonomously. This strategy relies on a reverse patterning method that encodes prescribed 3D geometric information as a spatial pattern of the unlocked phase (dispersed phase) in the locked phase (matrix phase) in a pre-stretched Nafion sheet. Building upon the unique chemical reprogramming capability of the Nafion shape memory polymer, we have developed a reconfigurable molding technology that can significantly reduce time, costs, and waste by shaping various 3D materials with high fidelity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Angewandte Chemie International Edition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.