Abstract

The plainfin midshipman fish (Porichthys notatus) is a nocturnal, seasonally breeding, intertidal-nesting teleost fish that produces social acoustic signals for intraspecific communication. Type I or “nesting” males produce agonistic and reproductive-related acoustic signals including a multiharmonic advertisement call during the summer breeding season. Previous work showed that type I male auditory sensitivity of the saccule, the primary midshipman auditory end organ, changes seasonally with reproductive state such that reproductive males become more sensitive and better suited than nonreproductive males to detect the dominant frequencies contained within type I vocalizations. Here, we examine whether reproductive type I males also exhibit reproductive-state dependent changes in hair cell (HC) density in the three putative auditory end organs (saccule, lagena, and utricle). We show that saccular HC density was greater in reproductive type I males compared to nonreproductive type I males, and that the increase in HC density occurs throughout the saccular epithelium in both the central and marginal epithelia regions. We also show as saccular HC density increases there is a concurrent decrease in saccular support cell (SC) density in reproductive type I males with no overall change in total cell density (i.e., HC + SC). In contrast, we did not observe any seasonal changes in HC density in the utricle or lagena between nonreproductive and reproductive type I males. In addition, we compare the saccular HC densities in reproductive type I males with that of reproductive females and show that females have greater saccular HC densities, which suggest a sexually dimorphic difference in HC receptor density between the two sexual phenotypes, at least during the summer breeding season.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.