Abstract

Micro(nano)plastics (MNPs) have been detected in various ecological environments and are widely used due to their stable properties, raising widespread concern about their potential human reproductive toxicity. Currently, infertility affects approximately 10–30% of couples of reproductive age globally. MNPs, as environmental pollutants, have been shown to exhibit reproductive toxicity through intrinsic mechanisms or as carriers of other hazardous substances. Numerous studies have established that MNPs of varying sizes and types can penetrate biological barriers, and enter tissues and even organelles of organisms through four main routes: dietary ingestion, inhalation, dermal contact, and medical interventions. However, historical research on the toxic effects of MNPs on reproduction mainly focused on lower and aquatic species. We conducted an inclusive review of studies involving terrestrial mammals, revealing that MNPs can induce reproductive toxicity via various mechanisms such as oxidative stress, inflammation, fibrosis, apoptosis, autophagy, disruption of intestinal flora, endocrine disruption, endoplasmic reticulum stress, and DNA damage. In terrestrial mammals, reproductive toxicity predominantly manifests as disruption in the blood-testis barrier (BTB), impaired spermatogenesis, sperm malformation, sperm DNA damage, reduced sperm fertilizing capacity, compromised oocyte maturation, impaired follicular growth, granulosa cell apoptosis, diminished ovarian reserve function, uterine and ovarian fibrosis, and endocrine disruption, among other effects. Furthermore, MNPs can traverse the maternal-fetal interface, potentially impacting offspring reproductive health. To gain a comprehensive understanding of the potential reproductive toxicity and underlying mechanisms of MNPs with different sizes, polymer types, shapes, and carried toxins, as well as to explore effective protective interventions for mitigating reproductive damage, further in-depth animal studies, clinical trials, and large-scale epidemiological studies are urgently required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.