Abstract

Understanding reproductive biology and performance of fish is essential to formulate effective conservation and management programs. Here, we studied reproductive strategies of female Delta Smelt Hypomesus transpacificus, an endangered fish species in the State of California, the United States, focusing on (1) better understanding their distribution pattern during the winter and spring spawning season at very fine scale to predict their possible spawning grounds and (2) assessing impacts of a recent, severe drought on their reproductive performance. We formulated our hypotheses as follows; (1) female Delta Smelt migrate to particular locations for spawning so that mature females can be frequently found in those locations throughout the spawning season and (2) reproductive performance of individual female fish declined during the drought. To test the first hypotheses, we analyzed relationships between water quality parameters and maturity/distribution pattern of Delta Smelt. Salinity better explained the distribution pattern of Delta Smelt at subadult and adult stages compared with water temperature or turbidity. Although there are some freshwater locations where mature Delta Smelt can frequently be found during the spawning season, Delta Smelt at the final maturation stage (Stage 5: hydration) and post spawners appeared to be widespread in the area where salinity was below 1.0 during the spawning season. Therefore, Delta Smelt could theoretically spawn in any freshwater locations, with more specific spawning requirements in the wild (e.g., substrate type and depth) still unknown. Delta Smelt, which experienced dry and critically dry conditions (the 2013 and 2014 year-classes), showed smaller oocytes, and lower clutch size and gonadosomatic index compared with the fish caught in a wet year (2011 year-class) at the late vitellogenic stage (Stage 4 Late), suggesting reproductive performance was negatively affected by environmental conditions during the drought.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call