Abstract

With significant surge of international trade in recent decades, increasingly more arthropod species have become established outside their natural range of distribution, causing enormous damage in their novel habitats. However, whether a species can colonize its new environment depends on its ability to overcome various barriers which may result in establishment failure, such as inbreeding depression and difficulty to find mates. Here, we used a haplodiploid pest, Tetranychus ludeni Zacher (Acari: Tetranychidae), which is native to Europe but now cosmopolitan, to investigate whether its reproductive strategies have facilitated its invasion success, providing knowledge to develop programs for prediction and management of biological invasions. We show that inbreeding had no negative influence on female reproductive outputs and longevity over 11 successive generations, allowing mother-son and brother-sister mating to occur at the invasion front without adverse consequences in fitness. Virgin females produced maximum number of sons in their early life to ensure subsequent mother-son mating but later saved resources to prolong longevity for potential future mating. Females maximized their resource allocation to egg production immediately after mating to secure production of maximum number of both daughters and sons as early as possible. Furthermore, mated females with mating delay increased proportion of daughters in offspring produced to compensate the loss of production of daughters during their virgin life. We suggest that the lack of inbreeding depression in successive generations and the ability to adjust resource allocations depending whether and when mating occurs may be the key features that have facilitated its invasion success.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call