Abstract
There is a global trend of declining fertility among people of childbearing age and mankind is confronted with great challenges of fertility problems. As a result, fertility preservation technology has emerged. Fertility preservation involves interventions and procedures aimed at preserving the patients' chances of having children when their fertility may have been impaired by their medical conditions or the treatments thereof, for example, chemotherapy and/or radiotherapy for cancer. The changes in patients' fertility can be temporary or permanent damage. Fertility preservation can help people diagnosed with cancer or other non-malignant diseases. More and more fertility preservation methods are being used to preserve the fertility of cancer patients and protect their reproductive organs from gonadotoxicity. Fertility preservation may be appropriate for young patients with early-stage cancers and good prognosis before they undergo treatments (chemotherapy and/or radiotherapy) that can negatively affect their fertility. It is also appropriate for patients with chronic conditions or those who have encountered environmental exposures that affect their gonadal function. Fertility preservation methods include oocyte cryopreservation, embryo cryopreservation, and ovarian tissue cryopreservation (OTC) for women and sperm freezing and testicular tissue freezing for men. The survival rates of children and adolescents diagnosed with malignant tumors have been steadily increasing as a result of advances in cancer treatments. Cryopreservation of oocytes and sperm is recognized as a well-established and successful strategy for fertility preservation in pubertal patients. OTC is the sole option for prepubertal girls. On the other hand, cryopreservation of immature testicular tissue remains the only alternative for prepubertal boys, but the technology is still in the experimental stage. A review showed that the utilization rate of cryopreserved semen ranged from 2.6% to 21.5%. In the case of cryopreserved female reproductive materials, the utilization rate ranged from 3.1% to 8.7% for oocytes, approximately from 9% to 22.4% for embryos, and from 6.9% to 30.3% for ovarian tissue. When patients have needs for fertility treatment, cryopreserved vitrified oocytes are resuscitated and in vitro fertilization-embryo transfer (IVF-ET) was performed to help patients accomplish their reproductive objectives, with the live birth rate (LBR) being 32%. On the other hand, when cryopreserved embryos are resuscitated and transferred, the LBR was 41%. OTC has the advantage of restoring natural fertility and presents a LBR of 33%, compared with the LBR of 19% among 266 IVF patients. In addition, OTC has the benefit of restoring the endocrine function. It has been observed that the shortest recovery time of the first menstruation after transplantation was 3.9 months, and the recovery rate of ovarian function reached 100%. To date, a growing number of cancer survivors and patients with other diseases are benefiting from fertility preservation measures. In the face of declining human fertility, fertility preservation provides a new approach to human reproduction. Fertility preservation should be applied in line with the ethical principles so as to fully protect the rights and interests of patients and their offsprings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.