Abstract

Improvements in plant density tolerance have played an essential role in grain corn yield gains for ≈80 years; however, plant density effects on sweet corn biomass allocation to the ear (the reproductive ‘sink’) is poorly quantified. Moreover, optimal plant densities for modern white-kernel shrunken-2 (sh2) hybrids are unknown. The objectives of the study were to 1) quantify the effect of plant density and hybrid on the reproductive sink of sweet corn and 2) determine optimal plant densities for white-kernel sh2 sweet corn. Field experiments were conducted across 2 years on 10 white-kernel sh2 hybrids grown at plant densities ranging from 4.3 to 8.6 plants/m2. Increasing plant density negatively influenced reproductive sink characteristics of individual sweet corn plants, including linear decreases in ear shoots/plant, marketable ears/plant, ear length, filled ear length, ear mass/plant, and kernel mass/plant. Reproductive traits varied widely among hybrids, including ear mass (15.6–20.6 Mt·ha−1) and recovery (32.3% to 42.4%), which is the contribution of fresh kernel mass to total ear mass. Hybrids had a common response to plant density, whereby ear yield was optimized at 5.5 plants/m2 and gross profit margin was optimized at 6.1 plants/m2. Plant density data from 586 growers’ fields suggest current seeding rates have optimized the reproductive sink size for today’s white-kernel sh2 hybrids. However, room exists for improving plant density tolerance, yield, and profitability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call