Abstract

Triploid female fish show impaired gametogenesis and are unable to produce viable offspring. The reproductive physiology of artificially-induced triploid female salmonids has been well described up until the time of first sexual maturation in diploids, but few reports exist for older triploids. This study reports the influence of triploidy on growth, ovarian development and reproductive endocrinology among three age classes of female brook trout (Salvelinus fontinalis) in comparison to sibling diploids. Triploids were larger than diploids for most of the study period, but the difference was statistically significant only during maturation and spawning of 2+ diploids. Plasma estradiol-17β (E2), testosterone (T) and vitellogenin (VTG) levels in triploids were generally lower than in diploids, and VTG was the only parameter to show seasonal fluctuations resembling those of diploids. Triploids showed significantly lower GSI and total oocyte number than diploids of similar age, and only half of all triploids sacrificed during the study (n=56) had developing oocytes in their ovaries. At age 3+, 13 of 19 triploid females had oocytes at various stages of development, including perinucleolar, yolk vesicle and yolk globule stages. In addition, three of these fish had collectively produced 72 mature stage oocytes. Thus, whereas diploid brook trout can produce mature oocytes as two-year-olds, triploids cannot do so until four years of age, with the number of mature oocytes being greatly reduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.