Abstract

Context Phenology plays a key role in shaping population dynamics, community structure and evolutionary adaptations. For freshwater mussels that rely on a parasitic larval (glochidia) phase on fish, shifts in reproductive phenology driven by environmental conditions may result in mismatches between glochidia release and host fish availability. Aims We investigated intra- and interspecific reproductive timing variations in sympatric Echyridella aucklandica and E. menziesii, and identified thermal cues (accumulated degree days, ADD) associated with brooding and glochidia maturation. Methods Brooding activity and glochidia maturation were assessed fortnightly–monthly over 1 year within four New Zealand streams. Results The previously unknown phenology of E. aucklandica showed earlier brooding (May–July) and longer gravidity (9–11 months) than for E. menziesii (August; 6–7 months). Both species exhibited peak brooding in late austral spring–summer (November–December). ADD played a key role in regulating the timing of brooding onset in both species, as evidenced by the narrow ADD range observed across sites, and the relationship between ADD and brooding onset in both species. Conclusion The demonstrated link between ADD and reproductive phenology has broad implications in the context of climate change. Specifically, it raises concerns about potential timing mismatches in glochidia release and host-fish availability, which could affect the survival and reproductive success of freshwater mussels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call