Abstract

Global environmental change, in marine ecosystems, is associated with concurrent shifts in water temperature, circulation, stratification, and nutrient input, with potentially wide-ranging biological effects. Variations in seawater temperature might alter physiological functioning, reproductive efficiency, and demographic traits of marine organisms, leading to shifts in population size and abundance. Differences in temperature tolerances between organisms can identify individual and ecological characteristics, which make corals able to persist and adapt in a climate change context. Here we investigated the possible effect of temperature on the reproductive output of the solitary non-zooxanthellate temperate coral Leptopsammia pruvoti, along an 8° latitudinal gradient. Samples have been collected in six populations along the gradient and each polyp was examined using histological and cyto-histometric analyses. We coupled our results with previous studies on the growth, demography, and calcification of L. pruvoti along the same temperature gradient, and compared them with those of another sympatric zooxanthellate coral Balanophyllia europaea to understand which trophic strategy makes the coral more tolerant to increasing temperature. The non-zooxanthellate species seemed to be quite tolerant to temperature increases, probably due to the lack of the symbiosis with zooxanthellae. To our knowledge, this is the first field investigation of the relationship between reproductive output and temperature increase of a temperate asymbiotic coral, providing novel insights into the poorly studied non-zooxanthellate scleractinians.

Highlights

  • Anthropogenic-derived climate change is the main source of environmental perturbation on a global scale, with an accelerated rate of increasing temperature that exceeds many pessimistic projections [1]

  • This study focused on the solitary non-zooxanthellate dendrophylliid Leptopsammia pruvoti, Lacaze-Duthiers, 1897 (S1 Fig), a gonochoric and brooding coral [18, 19]

  • Within the gamete recruitment period, most oocytes were smaller than 400 μm in all populations

Read more

Summary

Introduction

Anthropogenic-derived climate change is the main source of environmental perturbation on a global scale, with an accelerated rate of increasing temperature that exceeds many pessimistic projections [1]. Combined with rising sea levels and shifting weather patterns, warming will. Non-zooxanthellate coral reproduction along a natural gradient data collection and analysis, decision to publish, or preparation of the manuscript

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call