Abstract

Abstract The effects of climate change on plant reproductive performance affects the sequence of different plant reproductive stages from flowering to seed production and viability, as well as the network of relationships between them. These effects are expected to respond to different components of climate change, such as temperature and water availability, and may be sensitive to differences in species phenology. We used long-term experimental drought and warming treatments to study the effect of climate change on flower production, fruit and seed-set, seed size and seed germination rate (proportion of germinating seeds) in three Mediterranean shrubs coexisting in a coastal shrubland. Larger plants produced significantly more flowers in all three species, and higher fruit-set in Dorycnium pentaphyllum. Flower production was reduced in drought and warming treatments in the spring-flowering species D. pentaphyllum and Helianthemum syriacum, but not in the autumn–winter species Erica multiflora, which increased flowering in the warming treatment. However, the drought treatment eventually resulted in a decreased seed-set in E. multiflora. Structural equation modelling revealed strong correlations between the sequential reproductive stages. Specifically, flower density in inflorescences determined seed-set in H. syriacum, and seed size and germination rate in E. multiflora. Nevertheless, the relevance of relationships between reproductive traits changed between climatic treatments: in D. pentaphyllum a direct relationship between plant size and seed size only arised in the drought treatment, while in H. syriacum climate treatments resulted in a stronger relationship between the number of flowers and seed-set. This experimental study shows the ability of changing climatic variables to determine the reproductive sequential process of woody species. We show that several parameters of the reproductive performance of some Mediterranean species are affected by drought and warming treatments simulating climate change, highlighting the importance of changes in both water availability and temperature, and the sequential relationship between reproductive stages. Phenological patterns also contribute to species’ differential responses to climatic change, due to the relationship of these patterns with resource availability, environmental conditions and plant–pollinator interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call