Abstract

The Phylum Nematoda has long been known to contain a great diversity of species that vary in reproductive mode, though our understanding of the evolutionary origins, causes and consequences of nematode reproductive mode change have only recently started to mature. Here we bring together and analyze recent progress on reproductive mode evolution throughout the phylum, resulting from the application of molecular phylogenetic approaches and newly discovered nematode species. Reproductive mode variation is reviewed in multiple free-living, animal-parasitic and plant-parasitic nematode groups. Discussion ranges from the model nematode Caenorhabditis elegans and its close relatives, to the plant-parasitic nematodes of the Meloidogyne genus where there is extreme variation in reproductive mode between and even within species, to the vertebrate-parasitic genus Strongyloides and related genera where reproductive mode varies across generations (heterogony). Multiple evolutionary transitions from dioecous (obligately outcrossing) to hermaphroditism and parthenogenesis in the phylum are discussed, along with one case of an evolutionary transition from hermaphroditism to doioecy in the Oscheius genus. We consider the roles of underlying genetic mechanisms in promoting reproductive plasticity in this phylum, as well as the potential evolutionary forces promoting transitions in reproductive mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call