Abstract

Animal egg inherits a maternal centrosome from the meiosis-II spindle and sperm can introduce another centrosome at fertilization. It has been believed that in most animals only the sperm centrosome provides the division poles for mitosis in zygotes. This uniparental (paternal) inheritance of the centrosome must depend on the loss of the maternal centrosome. In starfish, suppression of polar body (PB) extrusion is a prerequisite for induction of parthenogenesis (Washitani-Nemoto et al. (1994) Dev. Biol. 163, 293–301), suggesting that the centrosomes cast off into PBs have reproducing capacity. Due to the absence of centriole duplication in meiosis II of starfish oocytes, each centrosome of a meiosis-II spindle has only one single centriole, whereas in meiosis I each has a pair of centrioles (Sluder et al. (1989) Dev. Biol. 131, 567–579; Kato et al. (1990) Dev. Growth Differ. 32, 41–49). Hence, the first PB (PB1) has two centrioles, whereas the second PB (PB2) and the mature egg have only one centriole, respectively. The present study examined the reproductive capacity of PB centrosomes by transplanting them into artificially activated eggs, and then the recipient egg nucleus with the surrounding cytoplasm was removed. A transplanted PB2 centrosome with a single centriole formed a monopolar spindle at the first mitosis, followed by formation of a bipolar spindle in the next mitosis, leading to actual cleavage and subsequent development. This proves the reproducing capacity of the single centriole in the PB2 centrosome. The behavior of the transplanted PB1 centrosome was exactly the same as in the PB2 centrosome, in spite of the difference in the number of centrioles. These results clearly show that (1) four maternal centrioles are heterogeneous in duplicating capacity, (2) during meiosis only one centriole in each of the centrosomes of a meiosis-I spindle pole retains duplicating capacity, (3) the reproductive centrioles are successively cast off into PBs, and finally a mature egg inheriting a nonreproductive centriole alone is formed, and (4) the presence of a single reproductive centriole is sufficient condition for embryonic development in starfish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call