Abstract

AbstractReproductive isolation is central to the speciation process, and cases where the strength of reproductive isolation varies geographically can inform our understanding of speciation mechanisms. Although generally treated as separate species, Black‐capped chickadees (Poecile atricapillus) and Carolina chickadees (P. carolinensis) hybridize and undergo genetic introgression in many areas where they come into contact across the eastern United States and in the northern Appalachian Mountains. The Great Smoky Mountains harbor the last large breeding population of atricapillus in the southern Appalachians, isolated from the species’ main range by nearly 200 km. This population is believed to be reproductively isolated from local carolinensis due to an unusual, behaviorally mediated elevational range gap, which forms during the breeding season and may function as an incipient reproductive isolating mechanism. We examined the effectiveness of this putative isolating mechanism by looking for genetic introgression from carolinensis in Great Smoky Mountain atricapillus. We characterized this population and parental controls genetically using hundreds of amplified fragment length polymorphism (AFLP) loci as well as mitochondrial DNA (mtDNA) sequence data from cytochrome‐b. Great Smoky Mountain atricapillus have experienced nuclear genetic introgression from carolinensis, but at much lower levels than other populations near the hybrid zone to the north. No mitochondrial introgression was detected, in contrast to northern contact areas. Thus, the seasonal elevational range gap appears to have been effective in reducing gene flow between these closely related taxa.

Highlights

  • Population isolation results from changes in the geographic range of a species

  • Ecology and Evolution published by John Wiley & Sons Ltd

  • No individuals were identified as migrants, and there was no evidence of carolinensis mitochondrial DNA (mtDNA) introgression into the Great Smoky Mountains (GSM) atricapillus population (Fig. 1)

Read more

Summary

Introduction

Population isolation results from changes in the geographic range of a species. Peripheral isolates can act as natural laboratories for evolutionary processes because they may experience different ecological and evolutionary pressures than populations in the species’ main range. Geographical isolates may preserve and accumulate these differences over time, resulting in replicate natural experiments on speciation (Key 1968; Themudo and Arntzen 2007). The evolution and ecology of peripherally isolated populations may be influenced by interactions with parapatric (or sympatric) relatives along contact zones, where hybridization or ecological competition may occur (Barton and Hewitt 1985; Sætre and Sæther 2010). A peripherally isolated population completely surrounded by populations of a close relative is known as an enclave (Arntzen 1978).

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.