Abstract
Early stages of speciation in plants might involve genetic incompatibilities between plastid and nuclear genomes, leading to inter-lineage hybrid breakdown due to the disruption between co-adapted plastid and nuclear genes encoding subunits of the same plastid protein complexes. We tested this hypothesis in Silene nutans, a gynodioecious Caryophyllaceae, where four distinct genetic lineages exhibited strong reproductive isolation among each other, resulting in chlorotic or variegated hybrids. By sequencing the whole gene content of the four plastomes through gene capture, and a large part of the nuclear genes encoding plastid subunits from RNAseq data, we searched for non-synonymous substitutions fixed in each lineage on both genomes. Lineages of S. nutans exhibited a high level of dN/dS ratios for plastid and nuclear genes encoding most plastid complexes, with a strong pattern of coevolution for genes encoding the subunits of ribosome and cytochrome b6/f that could explain the chlorosis of hybrids. Overall, relaxation of selection due to past bottlenecks and positive selection have driven the diversity pattern observed in S. nutans plastid complexes, leading to plastid-nuclear incompatibilities. We discuss the possible role of gynodioecy in the evolutionary dynamics of the plastomes through linked selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.