Abstract

BackgroundNeospora caninum is one of the main causes of abortion in pregnant animals. However, N. caninum-induced reproductive injury in male mice is still unclear.MethodsMale BALB/c mice were infected with a bovine isolate of N. caninum, and the organ coefficients of the testis and epididymis were measured. Lesions in the testis and epididymis were observed by light microscopy and transmission electron microscopy. Expression of the spermatogenic cell apoptosis-related proteins p53 and caspase-3 was detected by western blot. The expression of spermatogenesis-related genes in the testis was detected by reverse transcription-PCR. Sperm morphology and motility were observed. The levels of nitric oxide (NO) and antisperm antibody (AsAb) in the testicular homogenates and hormones in the serum were detected by enzyme-linked immunosorbent assay. The reproductive capacity of the male mice was detected using a reproduction test.ResultsThe organ coefficients of the testis and epididymis of the experimental group were significantly downregulated. Light microscopy examination revealed that the spermatogenic cells of the testis were arranged in a disordered manner, and the number was reduced. The number of sperm in the epididymal lumen was significantly reduced, and the cytoplasm exhibited vacuolation and degeneration. Ultrastructural studies revealed that the cells of the testis and epididymis tissues showed varying degrees of disease. The level of p53 and caspase-3 expression in the testis was significantly upregulated. The expression of the testicular spermatogenesis-related genes Herc4, Ipo11 and Mrto4 were strongly downregulated. Observation of sperm by microscopic examination revealed significantly reduced sperm density and sperm motility, and the number of sperm deformities was significantly increased. The level of NO and AsAb was significantly increased. The levels of luteinizing hormone, follicle-stimulating hormone and gonadotropin-releasing hormone were significantly upregulated, whereas the levels of testosterone, thyrotropin-releasing hormone, thyroxine and thyroid-stimulating hormone were significantly downregulated. After challenge, the infected male mice and healthy female mice were caged together: the subsequent fetal death rate was increased, and the conception rate, litter size, number of live births and the birth weight were significantly reduced.ConclusionsInfection of male BALB/c mice with the bovine isolate of N. caninum induced varying degrees of injury to the testis, epididymis and sperm of the mice, destroyed spermatogenesis and affected the reproductive capacity.Graphical

Highlights

  • Neospora caninum is one of the main causes of abortion in pregnant animals

  • This finding indicated that the established male BALB/c mouse model of N. caninum met the test requirements

  • Detection of hormone levels Serum collected from mice were analyzed with the enzyme-linked immunosorbent assay (ELISA) Ready-SET-Go kit (Alpha Diagnostic Intl Inc.) for mouse gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), lutenizing hormone (LH), testosterone (T), thyrotropin-releasing hormone (TRH), thyroid-stimulating hormone (TSH) and thyroxine (T4)

Read more

Summary

Introduction

Neospora caninum is one of the main causes of abortion in pregnant animals. Neospora caninum is morphologically classified as a protozoa. It has three predominant life-cycle stages, namely tachyzoite, cyst and oocyst, and it is spread in livestock herds through oocysts [1]. Once an animal is infected, N. caninum is able to parasitize the brain, liver, spleen, placenta and other tissues and organs, causing tissue damage. Neospora caninum can be transmitted to new hosts through horizontal and vertical transmission [2]. Based on the immune response to N. caninum infection in pregnant ewes, controlling placental transmission and fetal abortion is related to the intensity of the cell-mediated immune response during pregnancy [5]. There have been few reports of the effects of N. caninum on the reproductive organs of male mice

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call