Abstract

This study is an examination of the density of synaptic input to gonadotropin-releasing hormone (GnRH) neurons in young adult and aged retired breeder male rats. In earlier experiments on aged virgin male rats we observed an increase in synaptic input to this specific neuronal population, ascribable in part to synapses containing flattened vesicles, suggesting GABAergic input. The present study utilized retired breeders in order to dissect the effects of ageing from those associated with reproductive behavioral history. Tissue from the preoptic area was treated for the simultaneous electron microscopic immunocytochemical demonstration of GnRH with tetramethylbenzidine and glutamic acid decarboxylase (the essential enzyme in the production of GABA) using 3,3'-diaminobenzidine. Estimates of the density of synaptic input to the soma of GnRH neurons were made by calculating the percentage of perikaryal membrane with postsynaptic modification. Five GnRH neurons per animal were measured using computerized morpho-metrics and differences in the percent of membrane with synaptic modification between experimental groups were tested using the Mann-Whitney U non-parametric statistic. There was no difference in the total density of synaptic input to GnRH neurons in the young and old animals, or in the proportion of this input that was immunoreactive for glutamic acid decarboxylase. Similar measurements were made on random, non-identified neurons in the same region and a significant decrease with ageing in total synaptic input was found, though the glutamic acid decarboxylase component was unchanged. The present results are in contrast to our earlier findings on virgin males and suggest that reproductive behavioral experience affects the connectivity of GnRH neurons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call