Abstract
17α-Trenbolone and 17α-estradiol are principal metabolites in cattle excreta following the administration of Synovex® ONE, which contains trenbolone acetate and estradiol benzoate. As part of the environmental assessment of the use of Synovex® ONE, data were generated to characterize the effects of 17α-trenbolone and 17α-estradiol on the reproduction of freshwater fish. These substances are known endocrine disruptors, so the purpose of testing was not to clarify these properties but to identify concentrations representing population-relevant effects for use in risk characterization. The short-term reproduction assay was conducted with 17α-trenbolone using the fathead minnow (Pimephales promelas) and the medaka (Oryzias latipes) and with 17α-estradiol using the fathead minnow. Adverse effects on the population-relevant endpoints of survival and fecundity were used to establish the no-observed-effect concentration (NOEC) and the lowest-observed-effect concentration (LOEC) for each study. For 17α-trenbolone, adverse effects on fecundity of the fathead minnow occurred at 120 ng/L; this was the LOEC, and the NOEC was 35 ng/L. 17β-Trenbolone did not adversely affect survival and fecundity of medaka at the concentrations tested, resulting in a NOEC of 110 ng/L and a LOEC of >110 ng/L. 17α-Estradiol did not adversely impact survival and fecundity of the fathead minnow at the concentrations tested, resulting in a NOEC and LOEC of 250 ng/L and >250 ng/L, respectively. Environ Toxicol Chem 2017;36:636-644. © 2016 SETAC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.