Abstract

Acetamiprid (ACE) and imidacloprid (IMI) are two major members in the family of neonicotinoid pesticides, which are synthesized with a higher selectivity to insects. The present study determined and compared in vitro effects of ACE, IMI and nicotine on mammalian reproduction by using an integrated testing strategy for reproductive toxicology, which covered sperm quality, sperm penetration into oocytes and preimplantation embryonic development. Direct chemical exposure (500 µM or 5 mM) on spermatozoa during capacitation was performed, and in vitro fertilization (IVF) process, zygotes and 2-cell embryos were respectively incubated with chemical-supplemented medium until blastocyst formation to evaluate the reproductive toxicity of these chemicals and monitor the stages mainly affected. Generally, treatment of 500 µM or 5 mM chemicals for 30 min did not change sperm motility and DNA integrity significantly but the fertilization ability in in vitro fertilization (IVF) process, indicating that IVF process could detect and distinguish subtle effect of spermatozoa exposed to different chemicals. Culture experiment in the presence of chemicals in medium showed that fertilization process and zygotes are adversely affected by direct exposure of chemicals (P<0.05), in an order of nicotine>IMI>ACE, whereas developmental progression of 2-cell stage embryos was similar to controls (P>0.05). These findings unveiled the hazardous effects of neonicotinoid pesticides exposure on mammalian sperm fertilization ability as well as embryonic development, raising the concerns that neonicotinoid pesticides may pose reproductive risks on human reproductive health, especially in professional populations.

Highlights

  • Pesticides are widespread chemicals mainly utilized in pest control

  • Imidacloprid (IMI) and acetamiprid (ACE) are two of main compounds in a relatively new class of pesticides, neonicotinoids, which occupied dominant position in global market due to broad spectrum of activity to pests, low residue in environment and low toxicity to human [2,3]. Despite that they are synthesized to selectively bind to insect nicotinic acetylcholine receptor in central nervous systems [4], in vivo studies demonstrated that IMI, ACE and other neonicotinoid pesticides could adversely affect mammalian reproductive organs such as retardation of testicular development, damage to spermatogenesis, decrease in sperm quality and change of ovary morphology [5,6,7,8,9]

  • We investigated whether toxicant-induced reproductive hazards was associated with sperm DNA lesion using Sperm Chromatin Dispersion (SCD) assay

Read more

Summary

Introduction

Pesticides are widespread chemicals mainly utilized in pest control. Only for agricultural purposes, more than 140, 000 tones of pesticides are used annually in the European Union [1], this kind of extensive application raised concerns about hazards of pesticides to human health, including reproductive safety. Imidacloprid (IMI) and acetamiprid (ACE) are two of main compounds in a relatively new class of pesticides, neonicotinoids, which occupied dominant position in global market due to broad spectrum of activity to pests, low residue in environment and low toxicity to human [2,3] Despite that they are synthesized to selectively bind to insect nicotinic acetylcholine receptor (nAChRs) in central nervous systems [4], in vivo studies demonstrated that IMI, ACE and other neonicotinoid pesticides could adversely affect mammalian reproductive organs such as retardation of testicular development, damage to spermatogenesis, decrease in sperm quality and change of ovary morphology [5,6,7,8,9]. To evaluate the sensitivities of fertilization and embryos at different preimplantation stages to these chemicals, normal IVF procedure, zygotes and 2-cell embryos were respectively treated with chemicals, cultured in presence of chemicals, and monitored continuously until blastocyst formation

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call