Abstract
Endometrial function is often overlooked in the study of fertility in reproductive ecology, but it is crucial to implantation and the support of a successful pregnancy. Human female reproductive physiology can handle substantial energy demands that include the production of fecund cycles, ovulation, fertilization, placentation, a 9-month gestation, and often several years of lactation. The particular morphology of the human endometrium as well as our relative copiousness of menstruation and large neonatal size suggests that endometrial function has more resources allocated to it than many other primates. The human endometrium has a particularly invasive kind of hemochorial placentation and trophoblast that maximizes surface area and maternal-fetal contact, yet these processes are actually less efficient than the placentation of some of our primate relatives. The human endometrium and its associated processes appear to prioritize maximizing the transmission of oxygen and glucose to the fetus over efficiency and protection of maternal resources. Ovarian function controls many aspects of endometrial function and thus variation in the endometrium is often a reflection of ecological factors that impact the ovaries. However, preliminary evidence and literature from populations of different reproductive states, ages and pathologies also suggests that ecological stress plays a role in endometrial variation, different from or even independent of ovarian function. Immune stress and psychosocial stress appear to play some role in the endometrium's ability to carry a fetus through the mechanism of inflammation. Thus, within reproductive ecology we should move towards a model of women's fecundity and fertility that includes many components of ecological stress and their effects not only on the ovaries, but on processes related to endometrial function. Greater attention on the endometrium may aid in unraveling several issues in hominoid and specifically human evolutionary biology: a low implantation rate, high rates of early pregnancy loss, prenatal investment in singletons but postnatal support of several dependent offspring at once, and higher rate of reproductive and pregnancy-related pathology compared to other primates, ranging from endometriosis to preeclampsia. The study of the endometrium may also complicate some of these issues, as it raises the question of why humans have a maximally invasive placentation method and yet slow fetal growth rates. In this review, I will describe endometrial physiology, methods of measurement, variation, and some of the ecological variables that likely produce variation and pregnancy losses to demonstrate the necessity of further study. I propose several basic avenues of study that leave room for testable hypotheses in the field of reproductive ecology. And finally, I describe the potential of this work not just in reproductive ecology, but in the resolution of broader women's health issues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.