Abstract
The genus Melocactus comprises 36 species of globose cacti with the most derived traits in the Cereeae tribe. It is the proper study system to examine what are the most derived reproductive strategies within that tribe. This study aims to characterize the reproductive biology and to estimate the mating system parameters of two Andean melocacti, Melocactus schatzlii and M. andinus. The reproductive attributes of the two species were described, including floral morphology, anthesis patterns, floral rewards, floral visitors and visitation patterns. Levels of self-compatibility and autonomous self-pollination were estimated by hand-pollination experiments. Mating system estimates were obtained by conducting progeny array analyses using isozymes. The flowers of the two species present the typical hummingbird-pollination syndrome. Despite their morphological resemblance, the two species differ in flower size, pollen and ovule production and anthesis pattern. Their main pollinator agents are hummingbirds, four species in M. schatzlii and one species in M. andinus. Both cacti are self-compatible and capable of self-pollination without the aid of pollen vectors. Population-level outcrossing rate was higher for M. schatzlii (t(m)=0.9) than for M. andinus (t(m)=0.4). At the family level, outcrossing rates for most mothers of M. schatzlii were higher (t(m)>0.8) than for M. andinus (t(m)<0.5). Although the two cacti are capable of selfing, M. schatzlii is a predominantly outcrossing species, while M. andinus behaves as a mixed-mating cactus. Hummingbirds are the only pollinators responsible for outcrossing and gene flow events in these species. In their absence, both melocacti set seeds by selfing. Based on its low population size, restricted distribution in Venezuela, low rates of floral visits, and high levels of inbreeding, M. andinus is considered to be an endangered species deserving further study to define its conservation status.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.