Abstract

Recent studies have shown that certain host populations of the cereal rust mite Abacarus hystrix are highly specialized in their host use and it is likely that reproductive isolation exists between them. Here I verified this expectation by testing for reproductive barriers between ryegrass and quackgrass populations of A. hystrix. I performed reciprocal crosses between individuals from both populations and observed results of crosses. Leaves of the three grass species, ryegrass, quackgrass and wheat, were used as mating arenas. I used two criteria to determine reproductive barriers between strains: the proportion of female progeny and viability of progeny. If studied populations of this haplodiploid species are reproductively isolated a male-biased sex ratio and/or hybrid progeny of reduced viability would be expected. I found that in the presence of quackgrass and ryegrass pre-zygotic barriers between studied populations exists. On wheat I observed asymmetry in reproductive barriers. Between females from quackgrass and males from ryegrass a pre-zygotic barrier existed (only males obtained). However, the opposite reciprocal cross (females from ryegrass and males from quackgrass) produced progeny of both sexes. A male-biased sex ratio and low adult emergence suggests that post-zygotic mechanisms acted here. Low viability of progeny obtained from crosses in which females from ryegrass were engaged suggests that the origin of the female nymph acted as a predictor of hybrid inviability. The pattern of sterility observed in the cereal rust mite indicates that in the presence of three hosts (ryegrass, quackgrass and wheat) pre- and post-zygotic reproductive barriers between quackgrass and ryegrass populations of this mite exist. In addition to host fidelity (which acts as pre-zygotic barrier) there are post-zygotic barriers to gene flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call