Abstract

Mate finding, which is essential to both population growth and gene exchange, involves both spatial and temporal components. From a population dynamics perspective, spatial mate-finding problems are well studied, and decreased mate-finding efficiency at low population densities is a well-recognized mechanism for the Allee effect. Temporal aspects of mate finding have been rarely considered, but reproductive asynchrony may engender an Allee effect in which some females go mateless by virtue of temporal isolation. Here we develop and explore a model that unifies previously disparate theoretical considerations of spatial and temporal aspects of mate finding. Specifically, we develop a two-sex reaction-diffusion system to examine the interplay between reproductive asynchrony and the dispersal of individuals out of a patch. We also consider additional behavioral complications, including several alternative functional forms for mating efficiency and advective movements in which males actively seek out females. By calculating the fraction of females expected to go mateless as a joint function of reproductive asynchrony and patch size, we find that the population-level reproductive rates necessary to offset female matelessness may be quite high. These results suggest that Allee effects engendered by reproductive asynchrony will be greatly exacerbated in spatially isolated populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.