Abstract
In animal-pollinated plants, direct and indirect selection for large and small flowers in predominantly outcrossing and selfing species, respectively, is a common consequence of pollen limitation (PL). However, many hermaphroditic species show a mixed-mating system known as delayed selfing, which provides reproductive assurance (RA) only when outcrossing is not realized. Although RA is expected to reduce pollinator-mediated selection towards larger flowers, the consequences of delayed selfing for selection on flower size in mixed-mating species remain overlooked. We investigated whether RA weakens selection on flower size in Tuberaria guttata, a mixed-mating annual herb. We related pollinator visitation rates to flower size and measured seed production in emasculated, hand cross-pollinated and intact (control) flowers in three natural populations. For each population, we estimated variation in PL and RA across individuals differing in flower size and phenotypic selection on this trait. Pollinator visitation increased and RA decreased with flower size in all populations. Increasing RA diminished but did not fully alleviate PL, because of early-acting inbreeding depression. In the least-visited and most pollen-limited population, RA increased seed production by >200 %, intensely counteracting the strong pollinator-mediated selection for larger corollas. In the most-visited population, however, RA increased seed production by an average of only 9 %. This population exhibited the largest fraction of individuals that showed a decrease in seed production due to selfing and the weakest pollinator-mediated selection on flower size. The results suggest that the balance between the extent of RA and outcrossing contributes to determine flower size in mixed-mating systems. Pollinator-mediated selection favours larger flowers by increasing outcrossed seeds, but the benefits of RA greatly lessen this effect, especially under severe conditions of pollen limitation. Our findings also indicate that a mixed-mating system can represent an 'evolutionary trap' under an adequate pollinator supply.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.