Abstract

The evolution of inbreeding in plants has often been attributed to selection for the ability to set seed in the absence of mates or pollinators. Mechanisms of reproductive assurance in five populations of mixed mating Mimulus guttatus, three populations of inbreeding M. platycalyx, and two populations of inbreeding M. nasutus were examined in a pollinator‐free greenhouse. Reproductive assurance was manifested in all populations by autofertility, vegetative reproduction, or both. The inbreeding taxa had significantly greater levels of autofertility and less vegetative reproduction. Three modes of autofertility were identified: 1) due to corolla abscission only, occurring in three M. guttatus populations; 2) due to both corolla abscission and direct anther‐stigma contact by curling of the lower stigmatic lobe into the anthers, occurring in two M. guttatus populations; and 3) direct stigma‐anther contact by stigma curling alone prior to corolla abscission, found in each M. platycalyx and M. nasutus population. Stigma‐anther distance and its interaction with stigma curling contributed to differences in autofertility among populations. Significant levels of intrapopulation quantitative genetic variation were found for seven of ten traits examined; average levels were similar between inbreeding and mixed mating populations. Genetic variation within populations for autofertility per se was not detected, but significant levels controlling stigma‐anther distance were found in two M. guttatus populations. These results show that evolution of inbreeding by natural selection for reproductive assurance is possible in Mimulus, and illustrate the complex changes in floral dynamics and morphology it may involve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.