Abstract

The interplay of neural and hormonal mechanisms activated by entero- and extero-receptors biases the selection of actions by decision making neuronal circuits. The reproductive behavior of acoustically communicating grasshoppers, which is regulated by short-term neural and longer-term hormonal mechanisms, has frequently been used to study the cellular and physiological processes that select particular actions from the species-specific repertoire of behaviors. Various grasshoppers communicate with species- and situation-specific songs in order to attract and court mating partners, to signal reproductive readiness, or to fend off competitors. Selection and coordination of type, intensity, and timing of sound signals is mediated by the central complex, a highly structured brain neuropil known to integrate multimodal pre-processed sensory information by a large number of chemical messengers. In addition, reproductive activity including sound production critically depends on maturation, previous mating experience, and oviposition cycles. In this regard, juvenile hormone released from the corpora allata has been identified as a decisive hormonal signal necessary to establish reproductive motivation in grasshopper females. Both regulatory systems, the central complex mediating short-term regulation and the corpora allata mediating longer-term regulation of reproduction-related sound production mutually influence each other’s activity in order to generate a coherent state of excitation that promotes or suppresses reproductive behavior in respective appropriate or inappropriate situations. This review summarizes our current knowledge about extrinsic and intrinsic factors that influence grasshopper reproductive motivation, their representation in the nervous system and their integrative processing that mediates the initiation or suppression of reproductive behaviors.

Highlights

  • TO THE MATING BEHAVIOR OF ACOUSTICALLY COMMUNICATING GRASSHOPPERS The mating behavior of acoustically communicating grasshoppers (Orthoptera, Acrididae, Gomphocerinae) has been subject to various scientific investigations for some decades

  • The most complete set of data concerned with the generation, perception, and nervous processing of the species- and context-specific songs has been established in the species Chorthippus biguttulus, in which both males and females are capable of sound production by hind leg stridulation

  • We present the current knowledge about the neural and endocrinal mechanisms that select reproductive behaviors and activate sound production in appropriate situations and outline possible mechanisms that adjust long-term and short-term regulatory mechanisms to provide coherent behavioral responses

Read more

Summary

Introduction

TO THE MATING BEHAVIOR OF ACOUSTICALLY COMMUNICATING GRASSHOPPERS The mating behavior of acoustically communicating grasshoppers (Orthoptera, Acrididae, Gomphocerinae) has been subject to various scientific investigations for some decades. With dendritic input regions in the lower division of the central body and synaptic terminals in the lateral accessory lobes, activity of the mAChR expressing columnar neurons seems to represent an output signal of the central complex that is sufficient (or even necessary?) to initiate sound production.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.