Abstract

Based on a molecular neuroendocrine theory about cold environments, thyroid hormone levels, and liganded thyroid hormone receptor interference with estrogen receptor function, experiments were designed to test female mouse reproductive behaviors in the cold. Because natural seasonal temperature declines would usually be associated with decreased photoperiods and reduced food supplies, we combined cold temperatures with short days and metabolic challenge. The simplest hypothesis was that lordosis quotients would be significantly reduced as a result of cold temperatures. That hypothesis was denied. Instead, female approaches to the stud male declined. Because cold temperatures also led to significant reductions of activity in locomotor wheels, a straightforward reduction of activity could explain the female's behavior during mating tests. We suggest that cold temperatures accompanied by reduced photoperiod and reduced metabolic fuel can reduce overall activity in female mice, thus indirectly blocking untimely reproductive behaviors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call