Abstract

The spectral changes in surface-enhanced resonant Raman scattering (SERRS) and surface enhanced fluorescence (SEF) of single silver nanoparticle dimers adsorbed by near-single dye molecules are reproduced under strong coupling regimes. For the reproduction, the enhancement and quenching factors in SERRS and SEF are derived from the Purcell factors including both radiative and nonradiative plasmon modes. The Purcell factors are estimated using the coupling energies obtained by analyzing the spectral changes in plasmon resonance during SERRS and SEF decay processes on the basis of a classical hybridization model. The model is composed of a plasmon and a molecular exciton with phonon replicas accurately representing the molecular multi-level system. The reproduced SERRS spectral changes are consistent with the experimental ones. Furthermore, the calculated SEF spectral changes can reproduce the experimental ones by phenomenologically assuming transitions from ultra-fast SEF to conventional SEF with decreasing coupling energies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call