Abstract

This study uses a one-dimensional steady-state hydraulic model and the Fluvial Egg Drift Simulator (FluEgg) to model the drift and dispersion of grass carp eggs and larvae in the Maumee River, Ohio, for 180 scenarios representing different combinations of 10 river flows, 6 water temperatures, and 3 spawning locations. The FluEgg simulations were used to quantify in-river suspended hatching rates (the percentage of eggs that hatch within the river and in suspension) and in-river larval retention rates (the percentage of larvae that reach the gas bladder inflation stage within the river after hatching in suspension), and identify which scenarios produce the highest likelihood of recruitment. The simulations indicate that at low flows, in-river suspended hatching and larval retention rates in the Maumee River are limited by the capacity of the flow to keep fertilized eggs in suspension, whereas at high flows, the limiting factor is the distance available for the eggs/larvae to drift in the river. A wide range of scenarios result in eggs hatching within the river, but all larvae drift into Maumee Bay prior to the gas bladder inflation stage when flows exceed the mean annual flow. The simulations were assessed in the context of the hydraulic conditions that trigger spawning and maximize egg fertilization and the nursery habitat requirements for larval grass carp. The results indicate that the Maumee River, although suitable for grass carp spawning, may not be an ideal setting for recruitment unless Maumee Bay provides adequate nursery habitat for larvae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call