Abstract

Since meshless methods have been introduced to alleviate the difficulties arising in conventional finite element method, many papers on applications of meshless methods to boundary element method have been published. However, most of these papers use moving least squares approximation functions that have difficulties in prescribing essential boundary conditions. Recently, in order to strengthen the effectiveness of meshless methods, Oh et al. developed meshfree reproducing polynomial particle (RPP) shape functions, patchwise RPP and reproducing singularity particle (RSP) shape functions with use of flat-top partition of unity. All of these approximation functions satisfy the Kronecker delta property. In this paper, we report that meshfree RPP shape functions, patchwise RPP shape functions, and patchwise RSP shape functions effectively handle boundary integral equations with (or without) domain singularities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.