Abstract
Based on reproducing kernel theory, an analytical approach is considered to construct numerical solutions for some basic fractional ordinary differential equations (FODEs, for short) under fractal fractional derivative with the exponential decay kernel. For the first time, the implemented approach, namely reproducing kernel Hilbert space method (RKHSM), is proposed in terms of analytic and numerical fractal fractional solutions. Through the convergence analysis, we illustrate the high competency of the RKHSM. Our results are compared with the exact solutions, and they show us how the fractal-fractional derivative when the kernel is exponential decay affects the obtained outcomes. And, they also confirm the superior performance of the RKHSM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.