Abstract

The cell wall is a shape-defining structure that envelopes almost all bacteria, protecting them from biotic and abiotic stresses. Paradoxically, some filamentous actinomycetes have a natural ability to shed their cell wall under influence of hyperosmotic stress. These wall-deficient cells can revert to their walled state when transferred to a medium without osmoprotection but often lyse due to their fragile nature. Here, we designed plates with an osmolyte gradient to reduce cell lysis and thereby facilitating the transition between a walled and wall-deficient state. These gradient plates allow determining of the osmolyte concentration where switching takes place, thereby enabling careful and reproducible comparison between mutants affected by switching. Exploring these transitions could give valuable insights into the ecology of actinomycetes and their biotechnological applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.