Abstract

The multilevel properties of a memristor are significant for applications in non-volatile multi-state storage and electronic synapses. However, the reproducibility and stability of the intermediate resistance states are still challenging. A stacked HfOx/ZnO bilayer embedded with copper nanoparticles was thus proposed to investigate its multilevel properties and to emulate synaptic plasticity. The proposed memristor operated at the microampere level, which was ascribed to the barrier at the HfOx/ZnO interface suppressing the operational current. Compared with the stacked HfOx/ZnO bilayer without nanoparticles, the proposed memristor had a larger ON/OFF resistance ratio (~330), smaller operational voltages (absolute value < 3.5 V) and improved cycle-to-cycle reproducibility. The proposed memristor also exhibited four reproducible non-volatile resistance states, which were stable and well retained for at least ~1 year at 85 °C (or ~10 years at 70 °C), while for the HfOx/ZnO bilayer without copper nanoparticles, the minimum retention time of its multiple resistance states was ~9 days at 85 °C (or ~67 days at 70 °C). Additionally, the proposed memristor was capable of implementing short-term and long-term synaptic plasticities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.