Abstract
Today, wireless networks are operating in increasingly complex environments, impacting the evaluation and validation of new networking solutions. Simulation, although fully controllable and easily reproducible, depends on simplified physical layer and channel models, which often produce optimistic results. Experimentation is also influenced by external random phenomena and limited testbed scale and availability, resulting in hardly repeatable and reproducible results. Previously, we have proposed the Trace-based Simulation (TS) approach to address the problem. TS uses traces of radio link quality and position of nodes to accurately reproduce past experiments in ns-3. Yet, in its current version, TS is not compatible with scenarios where Multiple-In-Multiple-Out (MIMO) is used. This is especially relevant since ns-3 assumes perfectly independent MIMO radio streams. In this paper, we introduce the Trace-based Wi-Fi Station Manager Model, which is capable of reproducing the Rate Adaptation of past Wi-Fi experiments, including the number of effective radio streams used. To validate the proposed model, the network throughput was measured in different experiments performed in the w-iLab.t testbed, considering Single-In-Single-Out (SISO) and MIMO operation using IEEE 802.11a/n/ac standards. The experimental results were then compared with the network throughput achieved using the improved TS and Pure Simulation (PS) approaches, validating the new proposed model and confirming its relevance to reproduce experiments previously executed in real environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.