Abstract
The study of human midbrain development and midbrain related diseases, like Parkinson's disease (PD), is limited by deficiencies in the currently available and validated laboratory models. Three dimensional midbrain organoids represent an innovative strategy to recapitulate some aspects of the complexity and physiology of the human midbrain. Nevertheless, also these novel organoid models exhibit some inherent weaknesses, including the presence of a necrotic core and batch-to-batch variability. Here we describe an optimized approach for the standardized generation of midbrain organoids that addresses these limitations, while maintaining key features of midbrain development like dopaminergic neuron and astrocyte differentiation. Moreover, we have established a novel time-efficient, fit for purpose analysis pipeline and provided proof of concept for its usage by investigating toxin induced PD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.