Abstract

Nano-arrays are an important structure for building chemical filters, photonic crystal waveguides, antireflection, or transmission devices. There are different methods of lithography to produce these nano-arrays, which include contact and projection photolithography, E-beam direct writing, and X-ray lithography. Contact photolithography is the most widely used method due to its simplicity and good for time and cost-saving. However, there are penalties that come with these benefits which include problems of generating Newton rings and difficulties of transferring patterns faithfully for situations at and beyond the diffraction limit. In this work, we fabricated nano-arrays for high power antireflection applications using contact photolithography. Fortunately for the antireflection application, pattern periodicity is more important than obtaining the exact shape of the nanostructure. The fabricated structure, even though not the same as the original pattern, can still produce promising antireflection results. We have studied how the range of the distance between the mask and the photoresist affects the shapes of the produced patterns including holes, posts, and cones. The experimental results with different shapes and periodic patterns produced by different diffraction distances are explained with simulation results involving Fourier transformation and Fresnel diffraction of the mask patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call