Abstract

RNA structure-probing data can improve the prediction of RNA secondary and tertiary structure and allow structural changes to be identified and investigated. In recent years, massive parallel sequencing has dramatically improved the throughput of RNA structure probing experiments, but at the same time also made analysis of the data challenging for scientists without formal training in computational biology. Here, we discuss different strategies for data analysis of massive parallel sequencing-based structure-probing data. To facilitate reproducible and standardized analysis of this type of data, we have made a collection of tools, which allow raw sequencing reads to be converted to normalized probing values using different published strategies. In addition, we also provide tools for visualization of the probing data in the UCSC Genome Browser and for converting RNA coordinates to genomic coordinates and vice versa. The collection is implemented as functions in the R statistical environment and as tools in the Galaxy platform, making them easily accessible for the scientific community. We demonstrate the usefulness of the collection by applying it to the analysis of sequencing-based hydroxyl radical probing data and comparing different normalization strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.